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response, acclimation, and reversibility was studied. . Experiments included
slug and continuous addition of toxicants

The magnitude of the decrease in me 2 e production, the length of
decreased or zero gas production time, and the rate of return to full gas
) production is dependent on toxicant type and initial slug-dose concentra-
& tion, exposure time, solids retention time, and temperature. Response
] - patterns were remarkably similar for all toxicants. Extended periods of
] zero methane production were not indicative of ultimate process failure

: ¢ and recover rates were too high to be explained by bacterial regrowth.
There exists a critical, initial slug-dose concentration beyond which the
ability of the methanogens to recover quickly is severely impaired. Althoug
a higher value of solids retention time may result in a less severe response
_— " to slug and continuous addition of toxicants, there was no clear pattern -
) that applied to all toxicants. A sufficiently high SRT should, however, ‘
guard against washout of still-viable methanogens prior to recovery and/or
B acclimation. Higher temperature generally resulted in less severe re-
- sponses. All toxicants exhibited some reversibility and most exhibited
acclimation potential; the extent of reversibility and acclimation was
dependent on experimental conditions.
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ABSTRACT

Methane fermentation of industrial wastes offers the dual potential of
pollution abatement and energy conservation when compared to more commonly
used aerobic processes. In addition, only about ten percent as much excess
biological sludge is produced. Utilization of the process has been limited
due to several miscohceptions, one of which is the inability of anaerobic
processes to withstand exposure to toxicants. This report presents results
of experiments designed to investigate the effects of toxic substances on
methane bacteria. Toxicants studied were calcium, cadmium, chromium (III and
VI), nickel, sulfide, chloroform, dichloroethylene, trichloroethylene, ethyl
benzene, cationic surfactants (Hyamine 1622 and Hyamine 3500), regular
gasoline, jet fuel (JP-4), and hydrazine. The effect of toxicant concentra-
tion, solids retention time (SRT: 15, 25, and 50 days), and temperature (25°,
38°, and 42.5°C.) on methanogenic response, acclimation, and reversibility
was studied. Experiments included slug and continuous addition of toxicants.

Results from slug addition experiments showed that the magnitude of the
decrease in methane production, the length of decreased or zero gas production
time, and the rate of return to full gas production is dependent on toxicant
type and initial slug-dose concentration, exposure time, SRT, and temperature.
Response patterns were remarkably similar for all toxicants, and could gener-
ally be described by an empirical expression similar to the classical dis-
solved oxygen sag curve. Conceptual models were also developed to describe
observed behavior. Extended periods of zero methane production (in excess of
40 days) were not indicative of ultimate process failure and recovery rates
were too high to be explained by bacterial regrowth. There exists a critical,
initial slug-dose concentration beyond which the ability of the methanogens
to recover quickly is severely impaired. Once this concentration is exceeded,
recovery times become quite protracted. Although higher values of SRT (25
and 50 days) may result in less severe responses to the toxicants, there is
no clear pattern regarding recovery times that applies to all toxicants. The
effect of SRT is a complex interaction of cell age, biomass concentration,
and toxicant washout. Higher temperatures generally result in less severe
responses, 35°C being the 'preferred' temperature. A1l toxicants exhibited
some reversibility and most exhibited acclimation potential; the extent of
reversibility and acclimation was depend.nt on experimental conditions.
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Threshold concentrations (those causing the onset of decreased methane produc-
tion) were very dependent on temperature and were between 5000 and 15,000

mg/1 for calcium, less than 50 mg/1 for cadmium, between 5 and 60 mg/1 for
chromium III, less than 10 mg/1 for chromium VI, between 50 and 100 mg/1 for
nickel, less than 50 mg/1 for sulfide, less than 5 mg/1 for chloroform, less
than 50 mg/1 for both dichloroethylene and trichloroethylene, between 250 and
500 mg/1 for ethyl benzene, between 5 and 50 mg/1 for Hyamine 1622, between 1
and 10 mg/1 for Hyamine 3500, less than 2500 mg/1 for gasoline, between 1000
and 7500 for JP-4, and less than 10 mg/1 for hydrazine.

Results from continuous addition experiments confirmed the significant
acclimation potential of the methanogenic bacteria. Under optimal experi-
mental conditions, 200 mg/1 nickel, 20 mg/1 chloroform, and 50 mg/1 hydrazine
could be tolerated with no decrease in system performance. The magnitude of
the effect of SRT on response was once again shown to be dependent on toxi-
cant type, concentration and temperature. Cell age and biomass concentration
are undoubtedly contributing factors. In general, 25 and 50-day SRT will
yield less severe responses. 35°C was the preferred temperature.

The importance of SRT is manifested in acclimation potential; lower SRT
values result in washout of still-viable methanogens. A sufficiently high
SRT will guard against such washout.
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INTRODUCTION

Methane fermentation processes have been used for many years to stabil-
ize municipal wastewater sludges and have recently been applied to several
types of industrial wastewaters. Pollutant removal by methane fermentation
offers several significant advantages over more conventionally applied

treatment:
1.
2.

3.

No oxygen is required

Methane is produced and can be used as a
supplemental energy source

Less biological sludge is produced
Less nutrients need to be added.

These advantages are dramatically demonstrated by the potential economic
savings of about $100 per ton of organic removed and net energy savings of
near 20x108 BTU per ton of organic removed when anaerobic treatment is com-
pared with aerobic treatment. .

Even when the above advantages are considered, applications of methane
fermentation are limited and those systems in existence suffer from a some-
what unwarranted reputation for unreliability. Much of the hesitation in
applying the process and many of the bad experiences occurring after in-
stallation result from a lack of understanding of process fundamentals.
Effects of pH, alkalinity, temperature, mixing, and organic loading are
fairly well understood, if not well applied. One of the major unknowns is
how methane fermentation responds to toxicity. It is the general goal of
this research to better elucidate the toxicity phenomena as it relates to
methane bacteria. Fundamental information regarding toxicity phenomena is
necessary if we are to fully realize the advantages listed above for treat-
ing industrial wastewaters using methane fermentation.

There are a number of compounds and classes of compounds that have been
reported as toxic or inhibitory to methanogenic bacteria. A partial listing
includes:

Heavy Metals Antibiotics




Ammonium, cations in general Disinfectants
Cyanide Pesticides
Detergents Organics (general)

The usual source of the above classes of compounds is industry, and
the list of specific compounds is virtually Timitless. For this study,
fifteen relatively common toxicants were selected as representative of

industrial toxicants:

Cation - Calcium (Ca2%)

Anion - Sulfide (S27)

Heavy Metals - Nickel (Ni2%), Cadmium (Cd2¥), Chromium (Cr3*
and Cr6+)

Surfactant - Cationic (Hyamine 1622 and Hyamine 3500)

Organic Solvents - Chloroform, Ethyl Benzine, Trichloroethylene,

Dichloroethylene
Fuels - Gasoline, Jet Fuel (JP-4)
General - Hydrazine

cr3* and dichloroethylene were added to investigate differences in behavior
from Cré* and trichloroethylene. In addition, two cationic surfactants

{ were tested.
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BACKGROUND AND LITERATURE REVIEW

The purpose of this section is to review the known literature per-
taining to the inhibition of methane fermentation systems by the toxicants
selected for this study. In addition, brief descriptions of the anaerobic
process, toxicity phenomena, and the methods of toxicant application will
be presented.

PROCESS DESCRIPTION

The anaerobic treatment process involves a complex series of digestive
and fermentative reactions in which organic materials are converted into
carbon dioxide (COZ) and methane (CH4) gases. Methane, being relatively
insoluble in water, leaves the system, resulting in the stabilization of
influent organic matter. The process occurs in four stages: 1) initial
digestion of macromolecular materials by extracellular enzymes, such as
proteases and lipases, to soluble materials; 2) conversion of the soluble
materials to organic acids and alcohols by acid-producing fermentative
organisms; 3) fermentation of the organic acids and alcohols to acetate,
COZ and HZ; and 4) the conversion of H2 and C02 and acetate to CH4 by
methanogenic bacteria (Brock, 1979). -

The acid-producing fermentative organisms are facultative and obligate
anaerobic bacteria. These bacteria include Clostridium spp., Peptococcus
anaerobes, Bifidobacterium spp., Desulphovibrio spp., Corynebacterium spp.,
Lactobacillus, Actinomyces, Staphlococcus and Escherichia coli (Metcalf and
Eddy, 1979).

The methanogenic bacteria are strict anaerobes. They are in general
more sensitive than the acid formers and have very slow growth rates. As a
result, their growth is usually considered to limit the rate of the overall
conversion process. Waste stabilization occurs only when methane is formed.
The principal genera of bacteria include the rods Methanobacterium and
Methanobacillus and the spheres Methanococcus and Methanosarcina (Metcalf
and Eddy, 1979).

The stability of anaerobic processes depends primarily upon the methano-
genic bacteria, which are very sensitive to changes in the environment. Any
adverse change such as a sudden change in pH or temperature, or the intro-
duction of a toxicant into the digester may cause a decrease in gas




production, a lowering in the percentage of the methane gas produced, an
increase in volatile acids concentration, and a subsequent drop of the pH
as the buffer capacity is exceeded.

In order to operate an anaerobic treatment system efficiently, it is
important to maintain several environmental factors (McCarty, 1964; Dague,
1963; Metcalf and Eddy, 1979). The reactor contents should be free of dis-
solved oxygen and other inhibitory materials. The pH of the liquid should
range from 6.6 to 7.6. Sufficient alkalinity should be available to ensure
that the pH does not fall below about 6.2, since the methanogens will not
function efficiently below this value. The ensure proper growth of the
bacteria, sufficient nutrients (especially nitrogen, phosphorous and iron)
must be available. Finally temperature must be controlled. The optimum
range for mesophilic bacteria is 30° to 38°C., and 49° to 57°C. for thermo-
philic bacteria.

TOXICITY

Toxicity is a relative term, its definition is dependent upon concen-
tration. The concentration at which a material becomes toxic or inhibitory
may vary from a fraction of a mg/]l several thousand mg/1. The general
effect which results from the addition of most substances to a biological
system is illustrated in Figure 1. At very low concentrations, stimulation
of activity usually occurs. This stimulatory concentration may range from
only a fraction of a mg/1 for some heavy metals to several hundred mg/1 for
sodium or calcium salts (McCarty, 1964). As the concentration increases
beyond the stimulatory range, the rate of biological activity begins to de-
crease. A point i{s reached where the rate of activity is less than that
achieved in the absence of the material. This point is known as the cross-
over concentration, beyond which toxicity or inhibition occurs. A material
may be judged toxic because it may cause an adverse shift in the microbial
population of a biological waste treatment system. It might also cause the
process to be more susceptible to a change in temperature or pH (Gaudy and
Gaudy, 1980).

METHODS OF APPLICATION

Inhibitory substances may be introduced into a biological waste treat-
ment process in several ways, as shown in Figure 2. The first method of
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toxicant application shown is termed continuous addition. The continuous
addition of toxicant aliows for the gradual increase in concentration of
toxicant within the system. In this manner, methanogens are given the
opportunity to acclimate to this gradual build-up. The second method shown
is slug addition. This involves the addition of one large dose of toxicant,
which is then removed gradually, the rate depending upon the biological
solids retention time (SRT). Continuous and slug addition of toxicants
simulate chronic and transient toxicity, respectively. These two methods
were used in this study and will be explained further under EXPERIMENTAL
METHODS. The last method shown is nominally termed combination application.
This type of application combines the effects of the two described above.
Initially, a slug concentration is applied and this concentration then con-
tinues to be applied in the influent in order to maintain a constant level
regardless of SRT.

LITERATURE REVIEW
Inorganics

Data pertaining to calcium inhibition of methane fermentation is
limited. McCarty and McKinney (1961) and Kugelman and Chin (1971) studied
the effects of Ca2’ alone and in combination with other common cations.

The latter authors found that Ca2+ concentrations 0.05M and above inhibited
unacclimated methanogens, but that significant acclimation was possible.

Lawrence et al (1964) reported that soluble sulfides in excesss of
200 mg/1 caused significant decreases in methane production. Lawrence and
McCarty (1965) and Masselli et al (1967) recommended addition of sulfides
to control heavy metal toxicity by sulfide precipitation, but cautioned
against trading heavy metal toxicity for sulfide toxicity. Rudolfs and
Amberg (1952) found a decreased gas production of near 30 percent following
the addition of 200 mg/1 sulfide. It is important to note that under
anaerobic conditions, in a mixed culture of bacteria, sulfate is reduced to
sulfide, meaning that high-sulfate carriage waters are potential sulfide
toxicity problems.

It has long been realized that anaerobic systems are particularly
vulnerable to high loadings of heavy metals. The most common single cause
of stress in anaerobic digesters in England was reported to be heavy metal




toxicity (British Notes onWater Pollution, 1971). Mosey and Hughes (1975)
report that many heavy metal ijons react with the sulphydryl group of a wide
range of enzynes, inactivating them. This action tends to hinder growth of
the bacteria and in many cases kills them.

The toxicity of heavy metals depends upon the various chemical forms
which the metal may assume under anaerobic conditions and at near-neutral
pH levels. Mosey (1976) states that heavy metals only cause digestion
failure when the concentration of their free ions (soluble) exceeds a cer-
tain threshold concentration, which is directly related to the concentration
of divalent sulfide ions present in the digesting sludge. Work performed by
Ghosh (1971) showed that although low concentrations of some heavy metals
are extremely toxic, high concentrations could be tolerated if sufficient
sulfide was available for precipitation. Lawrence and McCarty (1965) and
Masselli et al (1967) also reported elimination of heavy metal toxicity with
sulfide addition. Data in Table 1, compiled by Barth et al (1965), gives
an indication of the difference between total and soluble concentrations
that may exist in a digester.

Table 1

Total and Soluble Heavy Metal Content of Digesters
(after Barth et al, 1965)

Metal Total Concentration Soluble Concentration
- (mg/1) (mg/1)
Chromium (VI) 420 3.0
Copper 196 0.7
Nickel 70 1.6
Zinc 341 0.1

It may be readily seen that complexation and precipitation reactions may
reduce the total metal concentration by a factor of over 100.

Soluble heavy metal concentrations reportedly associated with severe
inhibition of anaerobic systems are 0.5 mg/1 for copper, 3 mg/1 for chro-
mium VI, 2 mg/1 for nickel and 1 mg/1 for zinc (U.S. E.P.A., 1979; Mosey,
1976; DeWalle et al, 1979). Kugelman and Chin (1971) indicated that soluble
metal concentrations of a few mg/1 are all that is necessary to shut down
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gas production.
Unlike most prior research, Hayes and Theis (1978) investigated the
effects of heavy metals for both one-time, slug addition and semicontinuous

addition. Table 2 is a summary of the results from Hayes and Theis (1978).
Table 2
Heavy Metal Toxicity Limits for Anaerobic Digestion
Semi -Continuous Slug-Dose

Heavy Inhibiting Toxic Toxic
Metal Concentration Limit Limit

(mg/1) (mg/T) (mg/T)
Cr (III) 130 260 < 200
Cr (VI) 110 420 < 180
Cu 40 70 < 50
Ni 10 30 > 30
Cd - > 20 » 10
Pb 340 >240 » 250
n 400 600 <1700

It may be seen that with the exception of nickel and zinc, shock loading in
the form of a slug dose produced a Tower toxic limit than did semi-continuous
The authors related the order of decreasing toxicity on a weight-
At the dosages used, cadmium pro-

addition.
weight or melar basis as Ni>Cu>Pb>Cr>Zn.

duced no toxic effects.

Organics

Most of the research on surface active materials focused on anionic
The ability of synthetic detergents, especially alkylbenzene
sulfonates (ABS), to inhibit methane production is well known. Absorption
of the detergents on sewage sludge solids prior to anaerobic digestion of
those solids was the mechanism advanced in British Notes on Water Pollution
Some acclimation to the detergents was reported. Pitter et al

detergents.

(1971).

(1971) indicated that municipal sludge digestion was inhibited by linear




ABS concentrations greater than one percent of dry solids. Quaternary
ammonium compounds, common additives to synthetic detergents, are known to
cause inhibition to methane fermentation (Pearson, et al 1980; Speece, et al,
1979).

British Notes on Water Pollution (1971) reported that chlorinated hydro-
carbons are widely used as solvents. They are used to degrease mechanical
and electrical components and for dry-cleaning clothing. Some chlorinated
hydrocarbons have been found to be extremely toxic to anaerobic digestion
and have caused inhibition of a number of treatment plants in England.
Chloroform was found to be the most toxic. Inhibition depended both on the
sclids content of the feed sludge and on the concentration of the chloroform
in the wet sludge (mg/1) when other variables were excluded. Digesters
became acclimated to different loadings of chloroform with replacement of
between 0.5 and 6.0 percent of digester contents daily.

Bauchcp (1967) used chloroform as a specific inhibitor for methane
formation in suspensions of rumen fluid. Other investigators found that
chloroform levels as low as 0.5 mg/1 inhibited methanogenisis (Wolfe, 1971;
Hovious et al, 1973; Mosey and Hughes, 1975; Lamb et al,.1977; Baresi et al,
1978). Continuous feeding of 10 mg/1 of chloroform was found by Lamb et al
(1977) to cause inhibition in sewage treatment plants in Britain.

Contrary to previous studies, research by Yang et al (1980) revealed
that with acclimation, submerged anaerobic filters could tolerate 20 to 40
mg/1 of chloroform without inhibition of methane production. Application
of a slug dose of 200 mg/1 to an ‘'acclimated filter' resulted in a severe
reduction in methane production the following day, however, complete
recovery was observed within four days.

Hovious et al (1973) tested ethyl benzene at concentrations of 150 to
1000 mg/1 and found little or no inhibition. However, Chou et al (1977)
found that an ethyl benzene level of 200 mg/1 reduced activity by about 25
percent and a 60 percent reduction at 1000 mg/1. Ethylene dichloride, a
solvent very similar in structure to the dichloroethylene investigated in
the present study, has been reported to séVerely inhibit methane fermenta-
tion, inhibition starting at concentrations as low as 5 mg/1 (Hovious et al,
1973; Stuckey et al, 1980).

Little data are available on anaerobic toxicity of fuels and we could
find none on hydrazine toxicity. Rudolfs (1937) reported that gasoline
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inhibited anaerobic digestion of municipal sludge, the percent gasoline to
sludge volatile solids ratio being the parameter of importance. Speece

et al (1979) found that injection of 500 ml of no-lead gasoline to an
anaerobic filter temprarily reduced methane production by 70 percent.
Hovious et al (1973) found that kerosene concentration of 500 mg/1 only
reduced anaerobic activity by nine percent.

BASIS FOR AND GOALS OF STUDY
BASIS FOR STUDY

From a review of the literature it appears that very little research
has focused on patterns of recovery from toxicant exposure, acclimation and
reversibility characteristics, or kinetics of anaerobic systems exposed to
industrial toxicants. Little work has been done to evaluate the effect of
temperature and SRT. The present study attempts to address these aspects.

GOALS OF THE STUDY
As stated in the proposal for this study, the goals are:

1. To evaluate the relationship between concentration of
toxicant and the inhibition or toxicity caused.

2. To determine acclimation characteristics of methane
bacteria.

3. To examine the reversibility of the toxicity.

4. To quantify the kinetics of toxicity and inhibition so

as to formulate a dynamic model to describe the

experimental results.
Both slug and continuous addition of toxicants were examined. Acclimation
was studied using repeated slug additions and gradual exposure via continu-
ous addition. Reversibility was stua‘ed by observing recovery patterns
and by conducting specific reversibility experiments. Kinetics were inves-
tigated using data generated by experiments addressing goals one through
three.

n




EXPERIMENTAL METHODS

INTRODUCTION

. It is generally well accepted that the conversion of organic acids to
methane by methanugenic bacteria is the ‘rate limiting' step during high
rate, anaerobic fermentation of most complex organics (McCarty, 1966;
Lawrence and McCarty, 1969; Kugelman and Chin, 1971). Studie by Jeris and
McCarty (1965), Smith and Mah (1966) and O'Rourke (1968) have shown that
acetic acid is the most prevalent volatile acid intermediate formed in the
methane fermentation of complex organics such as fats, carbohydrates and
proteins. Research has shown that approximately 70 percent of the methane
generated from anaerobic degradation of complex organics comes from acetate
conversion to methane (Jeris and McCarty, 1965; Smith and Mah, 1966), thus
defining acetate as the key intermediate in anaerobic biological treatment.
Therefore, acetate enrichment cultures were selected to study the response
of methane fermentation systems to addition of toxicants. Toxicity was
evaluated using a serum bottle modification of the Hungate technique as
described by Miller and Wolin (1974).

INOCULUM SOURCE

The original acetate enrichment culture was developed with sludge from
an anaerobic digester. This system, a 400-1iter, complete-mix (CSTR) reac-
tor operated at a 50-day solids retention time (SRT or ec) and a temperature
of 35°C, has been maintained in our laboratory for five years on an inor- ?

o e AR

7‘< : ganic nutrient solution (Table 3) with acetate as the sole organic carbon .
;oo source, except for 10 mg/1 cysteine. Two additional seed cultures (20 liters P
%u. .. each) have been maintained at 8¢ values of 25 and 12.5 days for the past two

1 : years. Acetic acid is fed at the rate of 1050 mg/1 per day to all three

. systems.

During toxicity experiments, aliquots of these cultures were anaerobi-
cally removed from the proper seed reactor and transferred to prepared serum
bottles, 50 ml per bottle, using a syringe.




Table 3. Nutrient Salt Solution

Constituent Conc. (mg/1
| NH,C1 400
KC1 400
MgS0, .6H,0 400
Na,S 100
(NHy), HPO, 80
FeCl,.6H,0 40
CoCl1, 4
KI 10 .
Sodium Hexa Meta Phosphate 10 %
Cysteine 10 g
MnCl, - 0.5 i !
NH V205 0.5 :
in Cl, 0.5 3
NiCl, 0.5 i
Na,Mo 0,.2H,0 0.5
H380; 0.5 g
NaHCO, 6000 i
;1 H ?
1
¥ !
4 |
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SERUM BOTTLE TECHNIQUE

A technique similar to that described by Owen et al (1979) was used to
evaluate toxicity. The source of methanogenic bacteria was an acetate
enrichment culture.

Serum Bottle Preparation

Serum bottles of 150 ml capacity were rinsed thoroughly with tap water,
washed with a 1:1 HC1 solution, and copiously rinsed with tap water. Bottles
were then completely submerged in clean tap water and inverted, allowing the
air to be replaced by water. The water was then displaced using an oxygen-
free gas stream containing 67% N, and 33% C0,. Serum bottle stoppers were
inserted while the bottles were still submerged.

The oxygen-free bottles could then be inoculated with methane bacteria,
nutrients, and potential toxicants. Once inoculated, the bottles could be
operated in a batch or semi-continuous mode.

Semi-Continuous Qperation

Semi-continuous operation involved a 24-hour cycle of feeding, wasting,
and reading daily gas production. Total gas production was measured by dis-
placement of a colored, acidic, salt-saturated solution. A syringe needle,
connected to a specially designed graduated cylinder containing the colored
solution, pierced the serum bottle stopper and the fluid was displaced via
release of pressure from the bottle.

Following gas production measurement, glacial acetic acid (HAc) was
added to compensate for that consumed during the previous 24-hour cycle and
bring the HAc level back to 1050 mg/1 for the start of a new 24-~hour cycle.
Consumption was estimated using the following:

CH3C00H ~————— CH, + CO,

From the above stoichiometry, feeding 1050 mg/1 HAc to a 50-ml1 culture
volume should result in production of about 22 ml of CH, biologically
(assuming no synthesis) and about 22 ml C0, through chemical neutralization.
The amount of CO, produced each day can be estimated from this stoichiometry
and knowing how much HAc was added the previous day. Methane production was
calculated by subtracting this estimated CO, production from the total
measured gas production. The volume of HAc required to maintain a constant
Tevel of 1050 mg/1 HAc in the serum bottle was determined using the

., v




calculated methane production and the equation. This is better illustrated
using the example in Table 4. Errors may occur due to the assumption that
all the CO, produced was in the gas phase, however, this potential error
has not significantly affected reported results.

Table 4
Daily Gas Production Calculation Example

CH3COOH = CH, + CO,

1.05mg HAc  Im-mole HAc 22.4 ml CH, (273 +35)°C 0.44 ml CH,
(T (e Gmete i (Zree— ) T WA —

Theoretically, 1.0 ul HAc = 0.44 ml CO, + 0.44 ml CH,

Therefore,

Daily methane production =
0.44 m1 CO,

ul HAc

Total gas production - (u1 HAc fed previous day)

The solids retention time was controlled by removing or wasting a spe-
cific quantity of the enrichment culture (1, 2 or 3.33 m1 for SRT values of
50, 25 and 15 days, respectively) using a pre-set, automatic syringe. Ini-
tially, it was desired to operate the serum bottles at the same SRTs as the
i-q ’ inoculum digesters. There was no problem adapting the serum bottles to the

25-day and 50-day SRTs, but the 12.5 SRT could not maintain stable gas pro-

- duction. This was probably due to being so close to the 'washout' SRT
-fi . (bacterial generation time). Therefore, a 15-day SRT, which proved to be

_ more stable, was developed from the 25-day SRT inoculum digester. Following
‘1‘ removal of culture contents for SRT control, an appropriate volume of the

nutrient salt solution 1isted in Table 3, containing 1050 mg/1 HAc, was then
| added, completing the daily cycle. During continuous toxicant addition
} studies, toxicant was added at this time also.

T S i i o, ey g TR Ty a7 -
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Toxicant Introduction

Prior to addition of toxicants, serum bottles were operated as described
above until methane production stabilized at about 22 mi/day. Toxicants
were then added.

Slug-Dose Studies. Slug doses of the candidate toxicant were added from
a stock solution using syringes. For some organics, direct injection of the
liquid was practiced. Injection of the toxicants was done immediately after

the start of a new 24-hour cycle to minimize substrate utilization prior to
toxicant exposure.

Response to toxicant exposure was monitored using daily methane produc-
tion. Acclimation potential of the methanogens was studied by injecting a
second slug dose of toxicant at twice the original concentration once the
methane production had returned to the control level of 22 mi/day. Third

and fourth injections were made, each at double the previous councentration,
in some bottles.

Continuous-Additior Studies. After the serum bottles had stabilized
producing about 22 ml methane per day, toxicants were introduced as part of
the nutrient salt solution. Individual nutrient salt solutions were pre-
pared periodically for each of the three toxicant concentrations. The
nutrient salt solution for the cuntrol serum bottles contained no toxicant.
A1l of the serum bottles were maintained for a minimum of three SRTs in
order to provide for the opportunity to expose the methanogenic bacteria to
approximately 95 percent or more of the final desired concentration,
assuming no other chemical or biological reactions take place.

Reversibility Studies. Studies on the reversibility of the toxicity
phenomena were conducted by first injecting the toxicant to give the desired
concentration in the serum bottle. Then, after the desired exposure time
(one hour, one day, or four days), the serum bottles were placed directly
into a centrifuge and centrifuged for 15 minutes at 3000g. The serum
bottles were then carefully inverted and the supernatant was completely re-
moved using a syringe. A 75/25 percent mixture of N,/CO, was introduced as
the supernatant was withdrawn. Then, unadulterated supernatant from the
acetate enrichment culture was injected into the serum bottle to replace the
adulterated supernatant withdrawn. Daily feeding and gas measurement were
then continued as described above.

16
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ANALYTICAL TECHNIQUES

Volatile suspended solids (VSS) were measured using glass fiber filters
as described in Standard Methods (1975). COD was analyzed using the tech-
nique of Jirka and Carter (1975), pH was measured using a Fisher Accumet
Model 250A or a Corning Model 12 pH meter. Heavy metals were analyzed with
a Perkin Elmer Model 903 atomic absorption spectrophotometer.

Acetate was measured using a Carle Model AGC-311 (10% SP 1200/1% H3PO,
on Chromasorb W-AW 80.100 packing)or a Shimadzu GC-6AM Series (FAL-MoH3PO,
(Supelco) on Chromasorb W-AW 80/100 packing) gas chromatograph. Samples
for analysis were filtered or centrifuged and the liquid adjusted to pH 2-3
using solid meta-phosphoric acid.

INFINITE DILUTION TECHNIQUE

An "infinite dilution" technique has been developed to rapidly determine
KS values for soluble substrates. Williamson and McCarty (1974) developed
this method to calculate Ks’ the Monod half-velocity coefficient, for auto-
trophic oxidation of nitrite and ammonium. The experimental time periods
can be less than a few hours so that significant shifts in bacterial popula-
tions can be avoided. This technique is especially useful for very small
(in the mg/1 range) half-velocity coefficients.

Theory

A concentrated feed solution is continuously fed to a completely-mixed
reactor without effluent recycle or wasting. The use of a concentrated feed
minimizes the flowrate into the reactor, hence, the increase in reaction
volume over the few hours of the experiment is neglible.

The Michaelis-Menten expression for substrate utilization is:

-dS _ kSX
dt = §777§;
where S = rate-limiting substrate concentration {mass/volume)
t = time
k = maximum substrate utilization rate (time™!)
X = organism concentration (mass/volume)
Kg = half velocity coefficient (mass/volume)

17
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A mass balance for substrate in the reactor gives:

ds EfE. kSX

dt v Sst

where Sf = substrate concentration in the feed solution (mass/volume)
Q = feed flowrate (volume/time)
VY = reactor volume

Assuming that a steady-state substrate concentration will be reached when
the mass flowrate, SfQ, is maintained at less than the maximum utilization
rate, kXV, then;

ds SfQ kSX

_— = ) = — e —

dt v Sst
or kS ) Efg

Sst XV

Using this technique, the steady-state substrate concentrations are measured
for a number of bacterial suspensions fed at a series of constant mass flow
rates varying from 0 to kXV. From the data obtained the entire substrate
utilization rate versus S curve can be drawn and values of k and KS can be
obtained. Using the Lineweaver-Burke procedure, the above equation may be
rewritten as follows;

1 1
—_ = =2 .+ —
S

k

K
The slope of a plot of %— versus élﬁ- equals EE' and the ordinate intercept
f

equals %.

Procedures

The reactors were half-gallon plastic aspirator bottles. The top open-
ing of each bottle was fixed with a feed inlet and a gas outlet and was
sealed. Prior to system start-up the reactor volumes were displaced by an
oxygen-free gas stream containing 67% N, and 33% CO,. The reactors were

18




filled with 1.5-1iter aliquots drawn from the inoculum source. Two-mil
samples were withdrawn at appropriate intervals from a sample port at the
reactor base. Temperature was maintained at 35°C. Mixing was provided by
magnetic stir bars. Gas evacuated from the reactors was bubbled through an
acid/salt solution and was released to the atmosphere.

The microorganism concentration, as volatile suspended solids (VSS),
of the inoculum source was measured for each experiment. At the conclusion
of each experiment, reactor VSS was measured.

Feed solution was displaced from feed bottles and into the reactors by
a gas mixture produced by electrolysispumps. The feed solution contained
approximately 10,000 mg/1 as acetate and was prepared using distilled water
and either glacial acetic acid or potassium acetate. The potassium concen-
trations were determined to be well below inhibitory levels. Reactor pH
was checked before and after each experiment.

The substrate concentrations within the reactors and the feed solutions
were measured as acetic acid by gas chromotography (GC). All samples for
GC analysis were acidified to a pH Tess than 2 and then refrigerated.

A batch serum bottle technique was used to evaluate values of k that
could be compared to the k obtained by the infinite dilution experiments.
Approximately ten serum bottles were inoculated with 50-ml of culture and
greater than 2000 mg/1 of potassium acetate solution each time inoculum was
withdrawn from the inoculum source for an infinite dilution experiment.

The acetate concentration in the serum bottles was assumed to be much
greater than KS for the bacterial suspension. Hence, utilization was
assumed to be substrate unlimited. The maximum util.zation rate could be
obtained from the slope of a plot of gas produced in the serum bottles
versus time. Gas production was measured by a displacement of an acidified
salt solution. The serum bottles were maintained at 35°C.

19




RESULTS

SLUG ADDITION OF TOXICANTS

Daily methane production by serum bottles operated in the semi-con-
tinuous mode was recorded. Slug doses of cadmium, calcium, chloroform,
chromium III, chromium VI, dichloroethylene, ethyl benzene, Hyamine 1622,
Hyamine 3500, Hydrazine, gasoline, jet fuel (JP-4), nickel, and trichloro-
ethylene were introduced intn separate bottles after stabilizing at quasi
steady-state methane generation levels. Each toxicant was tested at six
concentrations, one solids retention time (50 days) and three temperatures
(25°C, 35°C, and 42.5°C). Exposure to calcium, chloroform, chromium III,
chromium VI, nickel, and sulfide was also investigated at a 25-day SRT and
the three temperatures. These six toxicants were also studied at a 15-day
SRT at 35°C.

Statistical analysis of the control serum bottles for each set of
environmental conditions revealed that the mean daily methane production
was 21.5 ml/day with a 95% confidence interval of + 1.5 ml for systems at
35°C and 42.5°C. The average methane production at 25°C was closer to
21 mi/day with a 95% confidence interval of approximately + 3 ml. For the
15-day, 35°C controls, the average methane production was 19.9 ml with a
95% confidence interval of + 4 m1. Temperature fluctuations were similar
in all three incubators, normally + 0.5°C.

Calcium (Ca++)

Stock solutions of calcium were prepared with CaCl,. Serum bottle
concentrations of 5000, 10,000, 15,000, 20,000, 25,000 and 30,000 mg/1 as
cat® were introduced as slug doses.

Responses to calcium exposure were very dependent upon concentration
and environmental conditions (Figures 3 to 9). With increasing temperature

and decreasing SRT, there was an increasing tendency for an initial increase

in gas production followed by the resumption of normal gas production or by
the expected decrease in methane generation. The increase in calculated
“methane" production is probably due to CO, generation from bicarbonate
alkalinity upon CaCO; precipitation. Those serum bottles not showing a
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sharp increase in gas production initially demonstrated the typical response
curve. This curve is characterized by a rapid drop in gas production

followed by a period of low or zero methane generation, the length dependent
upon initial toxicant concentration and, finally, recovery to normal gas
production. Recovery rates were generally slower than initial toxicant
response rates and were slower for higher initial slug dose concentrations.
One other unusual response to calcium was a residual toxicity effect exhibited
at higher temperatures, noted by decreases in methane production after an
initial return to control methane generation levels.

The severity of response increased significantly with increasing tem-
perature. Bottles maintained at a 25-day SRT were much more able to cope
with calcium toxicity than those at a 50-day SRT. For conditions tested, a
temperature of 35°C with a 15-day SRT appears to be optimum conditions in
terms of rate of recovery. These results were not expected, and may be due
to the rapid washout of toxicant at this Tow SRT.

Although there are some signs of acclimation to 10,000 mg/] ca*t at a
50-day SRT, significant acclimation was not clearly demonstrated (Figures
10 to 16). As a matter of fact, repeated injection of calcium appears to
be detrimental.

Cadmium (Cd¥)

Stock solutions of cadmium chloride were used to introduce serum bottle
concentrations of 50, 75, 100, 125, 150 and 200 mg/1 Cd++. Cadmium can of
course precipitate with the sulfide contained in the culture media. The
maximum available sulfide present would be 97 mg/1 as S. If all this sul-
fide reacted with the cadmium, a maximum of 340 mg/1 of cadmium would
precipitate. [t is unlikely that all the sulfur would be available for
precipitation.

Cadmium was the only toxicant to show an uncharacteristic response
pattern in relation to initial toxicant concentrations. MNormally, the
severity of response to toxicant exposure increased with increasing concen-
trations. The least severe response to cadmium did occur after introduction
of 50 mg/1 Cd**. However, an initial concentration of 200 mg/1 Cd**, the
largest slug dose, resulted in the second fastest recovery, while the last
bottles to recover were exposed to only 75 or 100 mg/1 Cd++ (Figures 17 to
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19). An unusually large experimental error could explain this anomaly.
Recovery from toxicant exposure generally occurred quickest in serum bottles
maintained at 35°C. At 42.5°C, the recoveries were only slightly slower,
however, the recovery times and recovery rates at 25°C were considerably
slower.

Data shown in Figures 20 to 22 indicate that methanogens can, to a
certain degree, acclimate to cadmium exposure.

Chromium (III) (Cr+3)

Stock solution of {Cr(H,0),C13]-2H,0 were used to introduce serum
bottle concentrations of 5, 10, 20, 40, 60 and 100 mg/1 Cr'>. In the pH
range observed during this study (6.5-7.4), chromium III can precipitate as
a hydroxide thereby reducing the soluble concentration the methanogens
"see.” Data presented in Table 1 (BACKGROUND AND LITERATURE REVIEW) demon-
strate this penomenon. Soluble Cr+3 was not measured in these studies.

Responses to chromium (III) were unusual in that the initial decrease
in methane production did not necessarily occur after only one day, as was
the case with most other toxicants studied. Responses, expressed as de-
creased methane production, were delayed Tonger as initial toxicant concen-
trations were decreased (Figures 23 to 29).

The effects of SRT and temperature were interdependent. Cultures
maintained at 25°C seemed to be better able to cope with chromium (III)
exposure when maintaining a 50-day SRT. Responses by 35°C cultures did not
vary significantly with changing SRT; the 15-day system exhibited a some-
what more severe response. However, serum bottles kept at 42.5°C were less
severely affected with a 25-day SRT.

At 35°C, the response to chromium (III) was least severe. Cultures
reacted a 1ittle more severely at 42.5°C, and those bottles kept at 25°C
showed the most severe response pattern.

Although there was some indication of acclimation potential for some
systems (Figures 30, 34, 35), the data do not permit a firm conclusion
(Figures 30 to 36). Upon exposure to a second or third slug dose, the re-
sponsive delays generally became much shorter, but in some cases were more
severe. Thus, using time after toxicant exposure required to resume normal
gas production as a criterfa, acclimation was demonstrated at 42.5°C and
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50-day SRT. However, if the period of reduced gas production is used as
the criterion, acclimation did not occur (Figure 36).

Chromium (VI) (cr'®)

Slug dose concentrations of 5, 10, 20, 40, 60 and 100 mg/1 Cr+6 were
introduced to serum bottle cultgres. The stock chromium (VI) solutions
were prepared from Na,CrQ,. Cr * can be reduced to Cr3+ in the anaerobic
environment of the serum bottle. The fact that chemical reactions take
place under such conditions is demonstrated by data in Table 1, which shows
that of the 420 mg/1 of Cré* present in a digester, only 3 mg/1 was soluble.
No attempt was made to ascertain the chemical fate of added Cré'.

Sharp and immediate reductions in methane generation resulted from the
toxicant exposure. Recovery from the lower concentrations began after only
a few days of exposure and proceeded at a rapid rate. Larger slug doses
caused longer periods of low gas production and significantly slower
recovery rates (Figures 37 to 43).

The dependence of toxicant response patterns on SRT again was shown to
vary with temperature. The differences at 25°C between the 25-day and 50-
day SRT cultures is not clear (Figures 38 and 41), but the 15-day SRT
appears to be preferred by 35°C cultures (Figures 37, 39 and 42). At 42.5°C,
responses to lower chromium (VI) concentrations are less severe with a 50-
day SRT, but when long periods of zero gas production result from exposure
to higher concentrations, the recovery appears faster in the 25-day SRT
bottles (Figures 40 and 43).

As with chromium (III) exposure, the order of temperatures resulting
in increasingly severe responses was 35°C, 42.5°C, and 25°C. Again the
25°C cultures seem to have been more severely affected by the toxicant than
bottles maintained at the higher’temperatures.

There was no evidence of acclimation to chromium (VI) at any combina-
tion of SRT and temperature (Figures 44 to 50). Responses to the toxicant
appear to be independent of previous toxicant exposure, except that a build-
up of chromium (VI) may have caused a more severe response as repetitive

slug-dose concentrations were increased.
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A ..

i Nickel (Ni™")

Stock solutions of nickel chloride were used to introduce serum bottle
concentrations of 50, 60, 70, 80, 90 and 100 mg/1 Ni++. Added nickel can
precipitate with sulfide present in the serum bottles. Using the technique
offered to estimate the maximum cadmium that could be precipitated, the
maximum nickel that could precipitate is 178 mg/1. Again, it is unlikely
that all the sulfur would be available for nickel precipitation.

Delayed response to the toxicant occurred at all three temperatures and
all SRTs (Figures 51 to 57). The longest delays generally occurred at 35°C
and the shortest delays, 1 to 2 days, were prevalent in the 42.5°C bottles.
The delays also decreased with increasing slug dose concentrations.

Those cultures maintained with a 25-day SRT (Figures 52 to 54) appeared
much more capable of tolerating nickel exposure than those with a 50-day SRT
(Figures 55 to 57). Comparison of SRT at 35°C indicates that the 15-day
system (Figure 51) experienced a slightly less severe response.

For a 25-day SRT, the effects of nickel were minimal at 25°C, tne toxicity
effects increasing at 35°C and 42.5°C (Figures 52 to 54). With a 50-day SRT,
a temperature of 35°C was preferable and 42.5°C again resulted in the most
severe responses (Figures 55 ta 57).

( Significant acclimation characteristics were demonstrated at SRTs of

25 and 50 days for temperatures of 25°C and 42.5°C (Figures 59, 61, 62 and
64). However, cultures maintained at 35°C did not exhibit significant accli-
mation capabilities (Figures 58, 60, and 63) for the concentrations tested.

A

’ Sulfide (S°)

STug dose concentrations of 50, 100, 150, 200, 300 and 500 mg/1 $™ in
serum bottles were provided from stock solutions of Na,S-9H,0. ]
The characteristic response to sulfide was a drop to the minimum methane .
R production after one day of toxicant exposure followed by a sharp increase i
R in gas generation on the second day. After this sharp, initial recovery, a
;“ . slower recovery rate predominated until the full methane production level
1‘ . was reached (Figures 65 to 71).
N . Recovery rates were generally faster in 50-day SRT systems, with the
? difference in rates increasing with increasing toxicant concentration.
! ) Cultures incubated at 25°C were most severely affected by sulfide, the
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response at 42.5°C was a little less severe, and minimum sensitivity to
sulfide was exhibited by 35°C serum bottles.

Acclimation to sulfide in the concentration range of 100 mg/1 to 800
mg/1 was not indicated under any set of conditions (Figures 72 to 78).
Responses to sulfide slug doses appear to be independent of previous expo-
sure to the toxicant for the concentrations tested.

Chloroform (CHC13)

Enrichment cultures were exposed to slug-dose concentrations of chloro-
form of 0.25, 0.5, 1.0, 2.5, 5.0 and 7.5 mg/1. Chloroform is volatile and
as such will partition between the 1iquid and gas phases after the slug
addition is made to the serum bottle. Using the technique developed by
Yang (1981), it is estimated that the concentration of chloroform in the
liquid is approximately 70 percent of the desired level.

After 24 hours of toxicant exposure, dramatic decreases in methane
generation were recorded for all concentrations causing a measurable response.
Recovery from the lower concentrations began on the second day, and recovery
was generally rapid, with the exception of bottles exposed to 5.0 and 7.5
mg/1 (Figures 79 to 85).

Systems maintained with a 25-day SRT were consistently better able to
cope with the chloroform than those at a 50-day SRT and the 15-day, 35°C
system was the least affected, an unexpected observation. This aspect will
be addressed in more detail in the DISCUSSION section.

Variation in toxicant response due to changing SRT and temperature
appears to be interdependent. At a 25-day SRT, the 25°C and 35°C serum
bottles were much more capable of tolerating chloroform exposure than the
42.5°C cultures (Figures 80 to 82). A 50-day SRT resulted in a slightly
more severe response by 35°C bottles compared to the 25-day SRT (Figure 84)
and the 42.5°C responses were generally independent of SRT (Figures 82 and
86). However, increasing the SRT resulted in much more severe responses by
25°C cultures (Figure 83).

Considerable acclimation was demonstrated at all temperatures and SRTs

i T T R PR+ gy PV et e

(Figures 86 to 92).
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Dichloroethylene (CIHC=CHCI)

Slug dose concentrations of 25, 50, 100, 250, 500 and 1000 mg/1 were
added to serum bottles using undiluted dichloroethylene as stock. Toxicant
exposure caused immediate and dramatic decreases in methane production.
Recovery was erratic at all three temperatures (Figures 92 to 95).

Severity of responses increased with increasing temperature. The
optimum temperature appears to be 25°C (Figure 92); severity of responses
to 25 and 50 mg/1 dichloroethylene increased significantly at 35°C (Figure
94), with a similar increase in response severity by 42.5°C cultures
(Figure 95). Acclimation to dichloroethylene was not observed (Figures 96
to 98).

Trichloroethylene (C1,C=CHC1)

Concentrations of 25, 50, 100, 250, 500 and 1000 mg/1 trichloroethylene
were added to serum bottles as slug doses. Responses to trichloroethylene
were generally immediate, although 1-day delays occurred with some lower
concentrations. Recovery was erratic, similar to dichloroethylene recovery
patterns (Figures 99 to 101).

Minimal responses to trichloroethylene were observed at 25°C (Figure
99). The severity of responses increased as temperatures were increased
to 35°C and 42.5°C (Figures 100 and 101). Acclimation to trichloroethylene
did not occur with the conditions tested (Figures 102 to 104).

Ethyl Benzene (CgH5-CHp~CHj)

Using undiluted ethyl benzene as stock solution, slug doses of 25, 50,
100, 250, 500 and 1000 mg/1 were added to serum bottle cultures. Responses
to ethyl benzene exposure were usually immediate and rapid. Recovery pat-
terns were generally steady, although some residual toxicity was noted
(Figures 105 to 107).

Effects of temperature on ethyl benzene toxicity were similar to tem-
perature effects on inhibition by dichloroethylene and trichloroethylene.
The 25°C incubation resulted in the least severe responses for exposure to
the five Tower toxicant concentrations; however, exposure to 1000 mg/1 ethyl
benzene at 25°C caused the most severe response of all conditions tested
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(Figure 105). At 35°C, the cultures were more severely affected by 500 mg/1
than at 25°C, although the response to 1000 mg/1 was much less severe
(Figure 106). A temperature of 42.5°C caused toxicant responses to be sig-
nificantly more severe (Figure 107).

There were some indications that acclimation to 500 mg/1 and 1000 mg/1
ethyl benzene may have occurred, however the data do not permit a definite
conclusion (Figures 108 to 110).

Hyamine 1622 (a cationic surfactant)

STug dose concentrations of 1, 5, 10, 20, 50 and 100 mg/1 were added
to serum bottles using dilutions of Hyamine 1622 as stock. Exposure to
this cationic surfactant caused a very sharp and immediate response as ex-
pressed by methane production. Recovery occurred at slow rates and was
noticeably erratic (Figures 111 to 113).

Comparison of the 25°C and 35°C bottles must be based on the two
largest slug doses (50 and 100 mg/1) since the lower concentrations did not
cause a measurable response. Recovery from the larger slug doses occurred
faster at 35°C (Figure 112) than at 25°C (Figure 111). Those cultures main-
tained at 42.5°C showed the quickest recovery from the 50 and 100 mg/1 con-
centrations, but they also were significantly affected by 10 and 20 mg/1
Hyamine 1622 (Figure 113).

Acclimation to Hyamine 1622 was not evident from the data collected
(Figures 114 to 116).

Hyamine 3500 (a cationic surfactant)

Stock solutions were prepared by diluting Hyamine 3500 and were used
to add slug doses of 1, 5, 10, 20, 50 and 100 mg/1. ODramatic and immediate
decreases in methane production resulted from exposure to the larger slug
doses (Figures 117 to 119), although a delay in response to the toxicant
did occur in a culture maintained at 25°C with a 50-day SRT (Figure 117).

Responses to the higher concentrations (20, 50 and 100 mg/1) were most
severe in bottles kept at 25°C (Figure 117). Cultures incubated at 35°C
displayed the minimum response to all toxicant concentrations (Figure 118).
At 42.5°C, responses to the higher slug doses were comparable to the 35°C
responses, but those bottles exposed to 10 mg/1 or less of Hyamine 3500
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were significantly more affected than cultures at 25°C or 35°C (Figure 119).

There is some evidence of acclimation to low concentrations of Hyamine
3500 although acclimation characteristics do not appear to be very consis-
tent (Figures 120 to 122).

Gasoline (regular, leaded)

Gasoline was added, undiluted, to serum bottles at initial slug doses
of 25, 50, 100, 250, 500 and 1000 mg/1. Concentrations were calculated
based on the measured density of the gasoline. However, since no responses
resulted from exposures to these concentrations, additional slug doses were
injected. The bottle with the highest initial dose (1000 mg/1) was not
given a second dose, but the other bottles exposed to 500, 250, 100, 50 and
25 mg/1 were exposed to slug doses of 2500, 5000, 7500, 10,000 and 15,000
mg/1, respectively.

The toxicant caused immediate anu very sharp responses, followed by a
period of zero or low gas production and a slow, erratic recovery (Figures
123 to 125).

Those cultures maintained at 42.5°C were the most sensitive to lower
concentrations of gasoline (2500 mg/1 or less), but displayed the fastest
recovery from higher concentrations (Figure 125), comparable to the recovery
pattern at 35°C (Figure 124). The 25°C cultures were most severely affected
by these higher slug doses (Figure 123).

Acclimation characteristics were not clearly defined (Figures 126 to
128), although there were indications of acclimation to 5000 mg/1 gasoline
at 35°C and 42.5°C (Figures 127 and 128). It appears that some degree of
acclimation is possible.

Jet Fuel (JP-4)

As with gasoline, initial slug doses of 25, 50, 100, 250, 500 and
1000 mg/1 jet fuel did not cause sufficient responses. Therefore, additional
toxicant was introduced to the cultures exposed to the five lower concentra-
tions. Injections of 2500, 5000, 7500, 10,000 and 15,000 mg/1 jet fuel were
added to initial slug doses of 500, 250, 100, 50 and 25 mg/1, respectively.
Responses to jet fuel were generally delayed a few days and decreases
in gas generation were erratic and occurred at an unusually slow rate
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compared to responses to other toxicants (Figures 129 to 131). Recovery
rates were even slower and more erratic, with residual toxicity frequently
being observed.

Temperatures of 25°C and 35°C resulted in similar response patterns
(Figures 129 and 130). However, at 42.5°C, the responses were much more
severe and considerable residual toxicity was demonstrated (Figure 131).

Cultures did clearly demonstrate acclimation to 5000 mg/1 jet fuel
(Figures 136 to 138). However, the additional slug doses also caused re-
sidual toxicity as concentrations reached 10,000 mg/1 in 25°C and 35°C
bottles and 2500 mg/1 in 42.5°C cultures.

Hydrazine (NpHy)

Slug dose concentrations of 10, 25, 50, 75, 100 and 150 mg/1 hydrazine
were added to serum bottle cultures, making use of stock solutions of
NzHy (HpS04) .

The rate of decrease in methane production resulting from hydrazine
exposure was much Tower than that for other toxicants (Figure 135 to 137).

Cultures maintained at 25°C demonstrated the longest periods of low gas
production (Figure 135). At 35°C, the serum bottles were most capable of
tolerating hydrazine exposure (Figure 136). Responses by bottles kept at
42.5°C were more severe than those by 35°C cultures, but were less severe
than 25°C responses (Figure 137).

Acclimation was not clearly demonstrated at any temperature (Figures
138 to 140).

CONTINUQUS ADDITION CF TOXICANTS

Daily methane production by serum bottles operated in the semi-continuous
mode was recorded. The continuous addition of nickel, chloroform, and
hydrazine was begun after the serum hottles had stabilized at quasi steady-
state methane generation levels. Etach of the three toxicants was tested at
three concentrations, three solids retention times (15, 25, and 50 days) and
three temperatures (25°C, 35°C, and 42.5°C).

Statistical analysis of the control serum bottles for each set of
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environmental conditions revealed that the mean daily methane gas production
ranged from 20.2 to 22.0 ml/day with standard deviations ranging from 0.15
to 0.91 ml. Temperature fluctuations were similar in all three incubators,
normally + 0.5°C. No significant differences were noted for any of the
various SRTs.

Nickel (Ni%):

The final desired concentrations resulting from the continuous addition
of nickel to the serum bottles were 100, 200 and 400 mg/1 as Ni2+. Nickel
may form a precipitate with suifide, thus reducing the soluble concentration
in the serum bottle. The maximum sulfide available from the nutrient solu-
tion was estimated to be 97 mg/1 Sz'. Using the appropriate solubility
calculations (Sawyer and McCarty, 1978), the maximum possible nickel that
could be precipitated is calculated to be 178 mg/1. It should be noted
again that it is unlikely that all the sulfur in the serum bottle will be
available for precipitation. Soluble Ni%* was not measured.

The highest concentration, 400 mg/1 as Niz+, could not be tolerated at
any of the SRTs or temperatures (Figures 141 to 149). In less than 10 days
after the initial introduction of nickel, gas production dropped to zero and
did not resume again before the study.

The 15-day SRT was the most unstable system (Figures 141, 144 and 147).
At 25°C, both the 200 mg/1 and 400 mg/1 concentrations could not be tolerated
(Figure 141). The methanogenic bacteria were only able to acciimate to the
100 mg/1 concentration, although gas production was irregular at times. At
35°C gas production for the 100 mg/1 system dropped to zero for two days and
returned to about 9 ml/day for the remainder of the study (Figure 144). Al-
though gas dipped for the 200 mg/1 concentration, it returned to the level of
the control within a few days. The reason for this apparent anamoly is un-
known. Gas production at 42.5°C was erratic for both 200 mg/1 and 400 mg/1
Ni 2* (Figure 147).

The 50-day SRT tolerated nickel much better than the 25-day SRT in the
long run, but the 25-day SRT seemed to recover faster (Figures 142, 143, 145,
146, 148, and 149). There was not much difference in the results for these

two SRTs. The preferred temperature was 35°C, with 25°C next and 42.5°C the
most irregular. Significant acclimation potential was exhibited at 25°C and
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